Overview

Yamcs Core comprises a Server and an Archive system. Its main purpose is an efficient and effective processing of telemetry and commands.

The Server can be connected to a TM/TC frontend (interface to Ground Station or EGSE equipment) or to a simulator used for development and test of the ground software or for training purposes. The data acquired from the TM/TC frontend is interpreted based on the Mission Database.

The Archive is a powerful storing system with functionality to inspect and retrieve data and to assess the archive completeness. It employs a graphical user interface.

Connected to Yamcs Core are a number of workstations which run end-user applications such as displays or commanding tools. Yamcs Core uses an embedded key-value database for storing all the received TM and sent TC. This helps to keep the deployment dependencies at a minimum. Support of distributed “big data” databases such as Apache HBase is also envisaged.

Communications between several Yamcs Servers is performed using the ApacheMQ Artemis messaging system. This allows complex deployments to handle use cases like mirror of archives, cascading of data to a DMZ network, forwarding data from remote sites, etc.

Features

- **Technologies**
 - XTCE standard for Mission Data Base definition
 - Unified Synoptic System (USS)
 - Message oriented middleware, Apache MQ Artemis
 - Security: TLS, LDAP, X.509 certificate
 - JSON and Protobuf
- **Server API**
 - REST API
 - WebSocket API
- **Protocols**
 - Raw packets over UDP unicast or multicast
 - Raw packets over TCP
 - DaSS (Columbus Ground Segment specific protocol)
 - PaCTS (EGSE software used by some of the Columbus payloads)
 - CCSDS Telemetry and Telecommand Space Link
 - ECSS Space Data Links
- **Flexibility**
 - Custom protocols can be easily added
 - Telemetry replay, scientific data extraction, profiling, and offline analysis
 - Detailed packet and parameter inspection
 - Remote and cascaded connectivity from external science users or other centres
 - Authorization at parameter, packet, and command level. Furthermore the authorization data is stored in an LDAP database

Figure 1 Yamcs component diagram
Overview

Yamcs Applications is an extended set of existing tools to augment the Yamcs Core functionalities, and it is further extensible to fulfill all kind of mission needs. In fact, the practical limit of out-of-the-box, legacy software for Mission Control Systems stands from the fact that a customization is always necessary to fulfill specific activities and integrate with the rest of the ground system. This limitation is not only expensive but must be usually faced with a large number of personnel, further increasing operational costs.

Yamcs Applications is a super-module of Yamcs Suite whose intent is to lower the dependence on COTS software and facilitating the tailoring of a generic MCS to specific mission needs, decreasing the risk and ultimately improve mission success and economy with no compromises in terms of performance and reliability.

One important application among the currently available products is Yamcs Studio, a rich desktop client for use with Yamcs Core, i.e. the Server. In its default configuration, it includes support for authoring and running operator displays, and comes bundled with various built-in displays that highlight different aspects of Yamcs (Alarms, Events, Commanding, Archive playbacks, etc.). See below for details.

Another in-house application is TYNA, which is a web-based frontend for remote notifications. See below for details.

Timeline is also developed in house and it provides the basic and convenient functionality of monitoring the mission activities and improve situational awareness.

At the moment, a third-party application has been integrated that exploits a well-known standard for flight control procedures and test scripts, i.e. SPELL.

The integration of further tools is fostered by the very philosophy of Yamcs Applications module.

Yamcs Studio

Editor and Runtime IDE

Yamcs Studio is Yamcs’ graphical user interface framework. It is built upon Control System Studio, which is a set of tools to monitor and control large scale control systems. The key attraction of Yamcs Studio is a full-feature runtime application for execution of User Interface displays and a corresponding design application for their authoring. It allows Yamcs users to build and subsequently execute displays required to operate part or whole of the mission.

In execution mode, Yamcs Studio connects to Yamcs real-time processor for TM and commanding acquisition and processing.
Features

- **Technologies**
 - XTCE standard for Mission Data Base definition
 - Unified Synoptic System (USS)
 - Message oriented middleware, Apache MQ Artemis
 - Security: TLS, LDAP, X.509 certificate
 - JSON and Protobuf

- **Server API**
 - REST API
 - WebSocket API

- **Protocols**
 - Raw packets over UDP unicast or multicast
 - Raw packets over TCP
 - DaSS (Columbus Ground Segment specific protocol)
 - PaCTS (EGSE software used by some of the Columbus payloads)
 - CCSDS Telemetry and Telecommand
 - Space Link
 - ECSS Space Data Links

- **Flexibility**
 - Custom protocols can be easily added
 - Telemetry replay, scientific data extraction, profiling, and offline analysis
 - Detailed packet and parameter inspection
 - Remote and cascaded connectivity from external science users or other centres
 - Authorization at parameter, packet, and command level. Furthermore the authorization data is stored in an LDAP database

In editor mode, a large set of widget for display authoring is available. Yamcs Studio is an Eclipse RCP application, and builds upon Open Source software libraries. The main programming language is Java 8.

In addition to being a display solution, Yamcs Studio includes a variety of custom views for complimentary operations in one integrated environment. These views can be rearranged across the window layout according to the operator’s needs. Major ones are the Archive Browser, the Event Viewer, the Command Stack, the Command History, the Command Queue, and the Data Link.

Figure 2 Yamcs Studio custom views

Figure 3 Yamcs Studio synoptic display
SPELL
Procedure Authoring and Execution Environment

Satellite Procedure Execution Language and Library (SPELL) is an open source framework for procedure-based automation of mission operations, developed by SES (satellite operator) and GMV. SPELL includes several components which are fully integrated with Yamcs and provide an integrated and collaborative environment for the development, testing, validation and execution of operational procedures as well as to automate other elements in mission operations.

TYNA
Automated Notification Tool for Control Centres

TYNA is an alarm safety and event response solution specifically developed for off-site operators. It is a web client application allowing an off-site operator to be notified of an event and to access its details.

TYNA will send alarm notifications to off-site operators by any of phone, email, pager message or SMS-text. Off-site operators will see or hear the details of active alarms and may acknowledge those alarms using the same format with which the alarm was sent.

TYNA is highly configurable and fully operative.

Timeline
Mission Activity Monitoring

Timeline is a tailor able web-based solution for positioning time-tagged data along a navigable time axis. Default features include panning, scaling, zooming and partial reloading. The technology allows for real-time updates of the timeline without browser refreshes.

It can be employed for multiple objectives like mission planning or GANTT-like resource planning. Timeline is continuously extended with major functionalities. Current ones are: support for multiple timescales in different time zones, custom lanes for indicating when passing through the SAA, general TDRS Ku- and S-band availability, orbit

Features

- **Technologies**
 - XTCE standard for Mission Data Base definition
 - Unified Synoptic System (USS)
 - Message oriented middleware, Apache MQ Artemis
 - Security: TLS, LDAP, X.509 certificate
 - JSON and Protobuf

- **Server API**
 - REST API
 - WebSocket API

- **Protocols**
 - Raw packets over UDP unicast or multicast
 - Raw packets over TCP
 - DaSS (Columbus Ground Segment specific protocol)
 - PaCTS (EGSE software used by some of the Columbus payloads)
 - CCSDS Telemetry and Telecommand Space Link
 - ECSS Space Data Links

- **Flexibility**
 - Custom protocols can be easily added
 - Telemetry replay, scientific data extraction, profiling, and offline analysis
 - Detailed packet and parameter inspection
 - Remote and cascaded connectivity from external science users or other centres
 - Authorization at parameter, packet, and command level. Furthermore the authorization data is stored in an LDAP database
Yamcs Suite

Yamcs Applications

numbers, day/night differences and attitude changes, a ‘now’-locator showing the current simulation time as provided by Yamcs.

What can be said about Yamcs Reliability?
It is crucial that the monitoring and control system performs flawlessly during operations.

The Yamcs deployment at Belgian User Operations and Support Centre typically provide over 4,320 hours of mission critical period (manoeuvres, science) each year, with a better-than 99.9% service availability rate. During non-critical mission periods, payloads are monitored 24/7 with a service availability of more than 99.7%.

What can be said about Yamcs Innovation?
Over years of on-field experience, we observed the physiological evolution of large and specific Mission Control Systems and their intrinsic limit to keep

Frequently Asked Questions

Why should I use Yamcs?
Customers usually select Yamcs because it is lightweight, easily configurable, and not hardware dependent. Yamcs is flexible and open source. Yamcs has the ability to easily interface with existing systems. Yamcs has a heritage of use in a range of applications, especially ISS.

Features

- Technologies
 XTCE standard for Mission Data Base definition
 Unified Synoptic System (USS)
 Message oriented middleware, Apache MQ Artemis
 Security: TLS, LDAP, X.509 certificate
 JSON and Protobuf

- Server API
 REST API
 WebSocket API

- Protocols
 Raw packets over UDP unicast or multicast
 Raw packets over TCP
 DaSS (Columbus Ground Segment specific protocol)
 PaCTS (EGSE software used by some of the Columbus payloads)
 CCSDS Telemetry and Telecommand Space Link
 ECSS Space Data Links

- Flexibility
 Custom protocols can be easily added
 Telemetry replay, scientific data extraction, profiling, and offline analysis
 Detailed packet and parameter inspection
 Remote and cascaded connectivity from external science users or other centres
 Authorization at parameter, packet, and command level. Furthermore the authorization data is stored in an LDAP database
the development and integration effort low. Therefore, we decided to use the latest technology to give birth to Yamcs to make it keep the pace with changing projects, technology and customers to enable lean operations, keep high standard of performance and reliability.

What can be said about software quality?

Quality of Yamcs developed software is the result of a long heritage of SpaceApps with ESA program requiring high-quality results and enforcing strong process orientation (ECSS standards). A certification plan is in place for delivery of safety-critical configuration of the Yamcs Core.

Who is the ideal customer of Yamcs?

Any individual or organization keen to rely on a proven and growing framework for his/her/its mission control system; looking for a solution that would be cost-effective in addressing risks but with no compromises on performance and functionalities and, in particular, with plenty of growing capabilities.

What is the licensing policy?

Yamcs Suite and its constituent parts come under different licenses due to the technologies used within.

Yamcs Core software comes under AGPL license (Affero General Public License) with components released under a LGPL license (Lesser General Public License).

From Yamcs Application standpoint, Yamcs Studio, based on CS-studio, has to be released under an GPL license (Eclipse Public License) which is similar to GPL. TYNA licensing scheme is driven by ESA software license regulations which allows any ESA member state organization to request a license.

Why is Yamcs (mostly) Open Source?

We believe that having an open-source core, is not only fun and exciting, but also increases the quality of our products and benefits all of our customers equally.

What is the documentation available?

All the information and documentation of Yamcs can be found at www.yamcs.org

What are the up-to-date deployment of Yamcs?

Belgian User Operations and Support Centre (BUSOC), European Robotic Arm Mission Control Centre (ERA-MCC), Atomic Clock Ensemble in Space ground segment (ACES), International Commercial Experiment Cubes Service (ICE Cubes), etc.